promise 有 pending、fulfilled、rejected 三种状态,状态一旦改变不可逆;2. 通过 then 方法注册回调并返回新 Promise 实现链式调用;3. 回调异步执行,使用 queueMicrotask 模拟微任务;4. resolvePromise 函数处理 then 返回值,若为 Promise 则递归解析,否则直接 resolve;5. 需防止循环引用和多次调用,确保错误冒泡。

Promise 是 javaScript 中处理异步操作的核心机制,理解其底层原理有助于更好地掌握异步编程。下面从手写一个简易但核心功能完整的 Promise 出发,深入剖析其实现逻辑。
Promise 核心特性与状态机
一个符合 Promise/A+ 规范的实现必须满足以下几点:
- Promise 有三种状态:pending(等待)、fulfilled(成功)、rejected(失败)
- 状态只能由 pending 转为 fulfilled 或 rejected,且一旦确定不可逆
- 通过 then 方法注册成功和失败的回调,支持链式调用
- then 的回调函数是异步执行的(微任务)
我们基于这些规则来实现一个简化版的 MyPromise。
基础结构与状态管理
先定义构造函数和基本状态:
立即学习“Java免费学习笔记(深入)”;
function MyPromise(executor) { this.state = 'pending'; this.value = undefined; this.reason = undefined; this.onFulfilledCallbacks = []; this.onRejectedCallbacks = []; const resolve = (value) => { if (this.state === 'pending') { this.state = 'fulfilled'; this.value = value; this.onFulfilledCallbacks.forEach(fn => fn()); } }; const reject = (reason) => { if (this.state === 'pending') { this.state = 'rejected'; this.reason = reason; this.onRejectedCallbacks.forEach(fn => fn()); } }; try { executor(resolve, reject); } catch (err) { reject(err); } }
这里通过数组缓存未执行的回调,确保在异步 resolve/reject 后仍能正确触发。
实现 then 方法
then 方法是 Promise 的核心,需返回一个新的 Promise 以支持链式调用:
MyPromise.prototype.then = function(onFulfilled, onRejected) { onFulfilled = typeof onFulfilled === 'function' ? onFulfilled : val => val; onRejected = typeof onRejected === 'function' ? onRejected : err => { throw err; }; const promise2 = new MyPromise((resolve, reject) => { if (this.state === 'fulfilled') { queueMicrotask(() => { try { const x = onFulfilled(this.value); resolvePromise(promise2, x, resolve, reject); } catch (e) { reject(e); } }); } if (this.state === 'rejected') { queueMicrotask(() => { try { const x = onRejected(this.reason); resolvePromise(promise2, x, resolve, reject); } catch (e) { reject(e); } }); } if (this.state === 'pending') { this.onFulfilledCallbacks.push(() => { queueMicrotask(() => { try { const x = onFulfilled(this.value); resolvePromise(promise2, x, resolve, reject); } catch (e) { reject(e); } }); }); this.onRejectedCallbacks.push(() => { queueMicrotask(() => { try { const x = onRejected(this.reason); resolvePromise(promise2, x, resolve, reject); } catch (e) { reject(e); } }); }); } }); return promise2; };
注意使用 queueMicrotask 模拟微任务执行,保证回调异步且优先于 setTimeout。
处理返回值与链式传递
Promise 链的关键在于 resolvePromise 函数,它决定如何处理 then 回调的返回值:
function resolvePromise(promise2, x, resolve, reject) { if (promise2 === x) { return reject(new TypeError('Chaining cycle detected')); } let called; if (x != null && (typeof x === 'object' || typeof x === 'function')) { try { const then = x.then; if (typeof then === 'function') { then.call(x, y => { if (called) return; called = true; resolvePromise(promise2, y, resolve, reject); }, r => { if (called) return; called = true; reject(r); }); } else { resolve(x); } } catch (e) { if (called) return; called = true; reject(e); } } else { resolve(x); } }
这段逻辑判断返回值是否为 Promise,如果是则递归解析,否则直接 resolve。
基本上就这些。虽然省略了 catch、finally、all、race 等方法,但核心机制已完整。手写一遍能真正理解 Promise 如何解决回调地狱、实现链式调用和错误冒泡。不复杂但容易忽略细节,比如循环引用、多次调用保护、异步调度等。